
Chapter 2

Getting started with qplot

2.1 Introduction

In this chapter, you will learn to make a wide variety of plots with your
first ggplot2 function, qplot(), short for quick plot. qplot makes it easy to
produce complex plots, often requiring several lines of code using other plotting
systems, in one line. qplot() can do this because it’s based on the grammar
of graphics, which allows you to create a simple, yet expressive, description
of the plot. In later chapters you’ll learn to use all of the expressive power of
the grammar, but here we’ll start simple so you can work your way up. You
will also start to learn some of the ggplot2 terminology that will be used
throughout the book.

qplot has been designed to be very similar to plot, which should make
it easy if you’re already familiar with plotting in R. Remember, during an R
session you can get a summary of all the arguments to qplot with R help,
?qplot.

In this chapter you’ll learn:

• The basic use of qplot—If you’re already familiar with plot, this will be
particularly easy, § 2.3.

• How to map variables to aesthetic attributes, like colour, size and shape,
§ 2.4.

• How to create many different types of plots by specifying different geoms,
and how to combine multiple types in a single plot, § 2.5.

• The use of faceting, also known as trellising or conditioning, to break apart
subsets of your data, § 2.6.

• How to tune the appearance of the plot by specifying some basic options,
§ 2.7.

• A few important differences between plot() and qplot(), § 2.8.

10 2 Getting started with qplot

2.2 Datasets

In this chapter we’ll just use one data source, so you can get familiar with
the plotting details rather than having to familiarise yourself with different
datasets. The diamonds dataset consists of prices and quality information
about 54,000 diamonds, and is included in the ggplot2 package. The data
contains the four C’s of diamond quality, carat, cut, colour and clarity; and
five physical measurements, depth, table, x, y and z, as described in Figure 2.1.
The first few rows of the data are shown in Table 2.1.

carat cut color clarity depth table price x y z

0.2 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43
0.2 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31
0.2 Good E VS1 56.9 65.0 327 4.05 4.07 2.31
0.3 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63
0.3 Good J SI2 63.3 58.0 335 4.34 4.35 2.75
0.2 Very Good J VVS2 62.8 57.0 336 3.94 3.96 2.48

Table 2.1: diamonds dataset. The variables depth, table, x, y and z refer to the
dimensions of the diamond as shown in Figure 2.1

z

table width

x

x

y

z
depth

depth = z depth / z * 100
table = table width / x * 100

Fig. 2.1: How the variables x, y, z, table and depth are measured.

The dataset has not been well cleaned, so as well as demonstrating inter-
esting relationships about diamonds, it also demonstrates some data quality
problems. We’ll also use another dataset, dsmall, which is a random sample
of 100 diamonds. We’ll use this data for plots that are more appropriate for
smaller datasets.

> set.seed(1410) # Make the sample reproducible

2.3 Basic use 11

> dsmall <- diamonds[sample(nrow(diamonds), 100),]

2.3 Basic use

As with plot, the first two arguments to qplot() are x and y, giving the
x- and y-coordinates for the objects on the plot. There is also an optional
data argument. If this is specified, qplot() will look inside that data frame
before looking for objects in your workspace. Using the data argument is
recommended: it’s a good idea to keep related data in a single data frame. If
you don’t specify one, qplot() will try to build one up for you and may look
in the wrong place.

Here is a simple example of the use of qplot(). It produces a scatterplot
showing the relationship between the price and carats (weight) of a diamond.

> qplot(carat, price, data = diamonds)

The plot shows a strong correlation with notable outliers and some interest-
ing vertical striation. The relationship looks exponential, though, so the first
thing we’d like to do is to transform the variables. Because qplot() accepts
functions of variables as arguments, we plot log(price) vs. log(carat):

> qplot(log(carat), log(price), data = diamonds)

The relationship now looks linear. With this much overplotting, though, we
need to be cautious about drawing firm conclusions.

Arguments can also be combinations of existing variables, so, if we are curi-
ous about the relationship between the volume of the diamond (approximated
by x× y × z) and its weight, we could do the following:

12 2 Getting started with qplot

> qplot(carat, x * y * z, data = diamonds)

We would expect the density (weight/volume) of diamonds to be constant,
and so see a linear relationship between volume and weight. The majority of
diamonds do seem to fall along a line, but there are some large outliers.

2.4 Colour, size, shape and other aesthetic attributes

The first big difference when using qplot instead of plot comes when you
want to assign colours—or sizes or shapes—to the points on your plot. With
plot, it’s your responsibility to convert a categorical variable in your data
(e.g., “apples”, “bananas”, “pears”) into something that plot knows how to
use (e.g., “red”, “yellow”, “green”). qplot can do this for you automatically,
and it will automatically provide a legend that maps the displayed attributes
to the data values. This makes it easy to include additional data on the plot.

In the next example, we augment the plot of carat and price with informa-
tion about diamond colour and cut. The results are shown in Figure 2.2.

qplot(carat, price, data = dsmall, colour = color)
qplot(carat, price, data = dsmall, shape = cut)

carat

pr
ice

5000

10000

15000

●

●

●

●
●

●
●

●
●

●

●●
●

●

●

●

●
●

●

●

●●●

●
●●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

0.5 1.0 1.5 2.0 2.5

color
● D
● E
● F
● G
● H
● I
● J

carat

pr
ice

5000

10000

15000

●
●

●

0.5 1.0 1.5 2.0 2.5

cut
● Fair

Good
Very Good
Premium
Ideal

Fig. 2.2: Mapping point colour to diamond colour (left), and point shape to cut
quality (right).

Colour, size and shape are all examples of aesthetic attributes, visual
properties that affect the way observations are displayed. For every aesthetic

2.5 Plot geoms 13

attribute, there is a function, called a scale, which maps data values to valid
values for that aesthetic. It is this scale that controls the appearance of the
points and associated legend. For example, in the above plots, the colour
scale maps J to purple and F to green. (Note that while I use British spelling
throughout this book, the software also accepts American spellings.)

You can also manually set the aesthetics using I(), e.g., colour = I("red")
or size = I(2). This is not the same as mapping and is explained in more
detail in Section 4.5.2. For large datasets, like the diamonds data, semi-
transparent points are often useful to alleviate some of the overplotting. To
make a semi-transparent colour you can use the alpha aesthetic, which takes
a value between 0 (completely transparent) and 1 (complete opaque). It’s
often useful to specify the transparency as a fraction, e.g., 1/10 or 1/20, as
the denominator specifies the number of points that must overplot to get a
completely opaque colour.

qplot(carat, price, data = diamonds, alpha = I(1/10))
qplot(carat, price, data = diamonds, alpha = I(1/100))
qplot(carat, price, data = diamonds, alpha = I(1/200))

Fig. 2.3: Reducing the alpha value from 1/10 (left) to 1/100 (middle) to 1/200 (right)
makes it possible to see where the bulk of the points lie.

Different types of aesthetic attributes work better with different types of
variables. For example, colour and shape work well with categorical variables,
while size works better with continuous variables. The amount of data also
makes a difference: if there is a lot of data, like in the plots above, it can
be hard to distinguish the different groups. An alternative solution is to use
faceting, which will be introduced in Section 2.6.

2.5 Plot geoms

qplot is not limited to scatterplots, but can produce almost any kind of plot
by varying the geom. Geom, short for geometric object, describes the type

14 2 Getting started with qplot

of object that is used to display the data. Some geoms have an associated
statistical transformation, for example, a histogram is a binning statistic plus
a bar geom. These different components are described in the next chapter.
Here we’ll introduce the most common and useful geoms, organised by the
dimensionality of data that they work with. The following geoms enable you
to investigate two-dimensional relationships:

• geom = "point" draws points to produce a scatterplot. This is the default
when you supply both x and y arguments to qplot().

• geom = "smooth" fits a smoother to the data and displays the smooth and
its standard error, § 2.5.1.

• geom = "boxplot" produces a box-and-whisker plot to summarise the
distribution of a set of points, § 2.5.2.

• geom = "path" and geom = "line" draw lines between the data points.
Traditionally these are used to explore relationships between time and
another variable, but lines may be used to join observations connected in
some other way. A line plot is constrained to produce lines that travel from
left to right, while paths can go in any direction, § 2.5.5.

For 1d distributions, your choice of geoms is guided by the variable type:

• For continuous variables, geom = "histogram" draws a histogram, geom =
"freqpoly" a frequency polygon, and geom = "density" creates a density
plot, § 2.5.3. The histogram geom is the default when you only supply an x
value to qplot().

• For discrete variables, geom = "bar" makes a bar chart, § 2.5.4.

2.5.1 Adding a smoother to a plot

If you have a scatterplot with many data points, it can be hard to see exactly
what trend is shown by the data. In this case you may want to add a smoothed
line to the plot. This is easily done using the smooth geom as shown in
Figure 2.4. Notice that we have combined multiple geoms by supplying a
vector of geom names created with c(). The geoms will be overlaid in the
order in which they appear.

qplot(carat, price, data = dsmall, geom = c("point", "smooth"))
qplot(carat, price, data = diamonds, geom = c("point", "smooth"))

Despite overplotting, our impression of an exponential relationship between
price and carat was correct. There are few diamonds bigger than three carats,
and our uncertainty in the form of the relationship increases as illustrated
by the point-wise confidence interval shown in grey. If you want to turn the
confidence interval off, use se = FALSE.

There are many different smoothers you can choose between by using the
method argument:

2.5 Plot geoms 15

Fig. 2.4: Smooth curves add to scatterplots of carat vs. price. The dsmall dataset
(left) and the full dataset (right).

• method = "loess", the default for small n, uses a smooth local regression.
More details about the algorithm used can be found in ?loess. The
wiggliness of the line is controlled by the span parameter, which ranges
from 0 (exceedingly wiggly) to 1 (not so wiggly), as shown in Figure 2.5.

qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
span = 0.2)

qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
span = 1)

Fig. 2.5: The effect of the span parameter. (Left) span = 0.2, and (right) span = 1.

Loess does not work well for large datasets (it’s O(n2) in memory), and so
an alternative smoothing algorithm is used when n is greater than 1,000.

• You could also load the mgcv library and use method = "gam", formula
= y ∼ s(x) to fit a generalised additive model. This is similar to using a
spline with lm, but the degree of smoothness is estimated from the data.
For large data, use the formula y ~ s(x, bs = "cs"). This is used by
default when there are more than 1,000 points.

library(mgcv)
qplot(carat, price, data = dsmall, geom = c("point", "smooth"),

16 2 Getting started with qplot

method = "gam", formula = y ~ s(x))
qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
method = "gam", formula = y ~ s(x, bs = "cs"))

Fig. 2.6: The effect of the formula parameter, using a generalised addi-
tive model as a smoother. (Left) formula = y ~ s(x), the default; (right)
formula = y ~ s(x, bs = "cs").

• method = "lm" fits a linear model. The default will fit a straight line to
your data, or you can specify formula = y ~ poly(x, 2) to specify a
degree 2 polynomial, or better, load the splines package and use a natural
spline: formula = y ~ ns(x, 2). The second parameter is the degrees
of freedom: a higher number will create a wigglier curve. You are free to
specify any formula involving x and y. Figure 2.7 shows two examples
created with the following code.

library(splines)
qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
method = "lm")

qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
method = "lm", formula = y ~ ns(x,5))

• method = "rlm" works like lm, but uses a robust fitting algorithm so that
outliers don’t affect the fit as much. It’s part of the MASS package, so
remember to load that first.

2.5.2 Boxplots and jittered points

When a set of data includes a categorical variable and one or more continuous
variables, you will probably be interested to know how the values of the
continuous variables vary with the levels of the categorical variable. Box-
plots and jittered points offer two ways to do this. Figure 2.8 explores how
the distribution of price per carat varies with the colour of the diamond
using jittering (geom = "jitter", left) and box-and-whisker plots (geom =
"boxplot", right).

2.5 Plot geoms 17

Fig. 2.7: The effect of the formula parameter, using a linear model as a smoother.
(Left) formula = y ~ x, the default; (right) formula = y ~ ns(x, 5).

Fig. 2.8: Using jittering (left) and boxplots (right) to investigate the distribution of
price per carat, conditional on colour. As the colour improves (from left to right) the
spread of values decreases, but there is little change in the centre of the distribution.

Each method has its strengths and weaknesses. Boxplots summarise the
bulk of the distribution with only five numbers, while jittered plots show every
point but can suffer from overplotting. In the example here, both plots show
the dependency of the spread of price per carat on diamond colour, but the
boxplots are more informative, indicating that there is very little change in
the median and adjacent quartiles.

The overplotting seen in the plot of jittered values can be alleviated some-
what by using semi-transparent points using the alpha argument. Figure 2.9
illustrates three different levels of transparency, which make it easier to see
where the bulk of the points lie. The plots are produced with the following
code.

qplot(color, price / carat, data = diamonds, geom = "jitter",
alpha = I(1 / 5))
qplot(color, price / carat, data = diamonds, geom = "jitter",
alpha = I(1 / 50))
qplot(color, price / carat, data = diamonds, geom = "jitter",
alpha = I(1 / 200))

18 2 Getting started with qplot

Fig. 2.9: Varying the alpha level. From left to right: 1/5, 1/50, 1/200. As the opacity
decreases we begin to see where the bulk of the data lies. However, the boxplot still
does much better.

This technique can’t show the positions of the quantiles as well as a boxplot
can, but it may reveal other features of the distribution that a boxplot cannot.

For jittered points, qplot offers the same control over aesthetics as it
does for a normal scatterplot: size, colour and shape. For boxplots you can
control the outline colour, the internal fill colour and the size of the lines.

Another way to look at conditional distributions is to use faceting to plot
a separate histogram or density plot for each value of the categorical variable.
This is demonstrated in Section 2.6.

2.5.3 Histogram and density plots

Histogram and density plots show the distribution of a single variable. They
provide more information about the distribution of a single group than boxplots
do, but it is harder to compare many groups (although we will look at one
way to do so). Figure 2.10 shows the distribution of carats with a histogram
and a density plot.

qplot(carat, data = diamonds, geom = "histogram")
qplot(carat, data = diamonds, geom = "density")

For the density plot, the adjust argument controls the degree of smooth-
ness (high values of adjust produce smoother plots). For the histogram, the
binwidth argument controls the amount of smoothing by setting the bin size.
(Break points can also be specified explicitly, using the breaks argument.) It is
very important to experiment with the level of smoothing. With a histogram
you should try many bin widths: You may find that gross features of the data
show up well at a large bin width, while finer features require a very narrow
width.

In Figure 2.11, we experiment with three values of binwidth: 1.0, 0.1 and
0.01. It is only in the plot with the smallest bin width (right) that we see the
striations we noted in an earlier scatterplot, most at “nice” numbers of carats.
The full code is:

2.5 Plot geoms 19

carat

co
un
t

0

2000

4000

6000

8000

1 2 3 4 5
carat

de
ns
ity

0.0

0.5

1.0

1.5

1 2 3 4 5

Fig. 2.10: Displaying the distribution of diamonds. (Left) geom = "histogram" and
(right) geom = "density".

qplot(carat, data = diamonds, geom = "histogram", binwidth = 1,
xlim = c(0,3))

qplot(carat, data = diamonds, geom = "histogram", binwidth = 0.1,
xlim = c(0,3))

qplot(carat, data = diamonds, geom = "histogram", binwidth = 0.01,
xlim = c(0,3))

carat

co
un
t

0

5000

10000

15000

20000

25000

30000

35000

0.0 0.5 1.0 1.5 2.0 2.5 3.0
carat

co
un
t

0

2000

4000

6000

8000

10000

0.0 0.5 1.0 1.5 2.0 2.5 3.0
carat

co
un
t

0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 2.11: Varying the bin width on a histogram of carat reveals interesting patterns.
Binwidths from left to right: 1, 0.1 and 0.01 carats. Only diamonds between 0 and 3
carats shown.

To compare the distributions of different subgroups, just add an aesthetic
mapping, as in the following code.

qplot(carat, data = diamonds, geom = "density", colour = color)
qplot(carat, data = diamonds, geom = "histogram", fill = color)

Mapping a categorical variable to an aesthetic will automatically split up the
geom by that variable, so these commands instruct qplot() to draw a density
plot and histogram for each level of diamond colour. The results are shown in
Figure 2.12.

20 2 Getting started with qplot

carat

de
ns
ity

0.0

0.5

1.0

1.5

2.0

1 2 3 4 5

color
D
E
F
G
H
I
J

carat

co
un
t

0

2000

4000

6000

8000

1 2 3 4 5

color
D
E
F
G
H
I
J

Fig. 2.12: Mapping a categorical variable to an aesthetic will automatically split up
the geom by that variable. (Left) Density plots are overlaid and (right) histograms
are stacked.

The density plot is more appealing at first because it seems easy to read
and compare the various curves. However, it is more difficult to understand
exactly what a density plot is showing. In addition, the density plot makes
some assumptions that may not be true for our data; i.e., that it is unbounded,
continuous and smooth.

2.5.4 Bar charts

The discrete analogue of histogram is the bar chart, geom = "bar". The bar
geom counts the number of instances of each class so that you don’t need to
tabulate your values beforehand, as with barchart in base R. If the data has
already been tabulated or if you’d like to tabulate class members in some other
way, such as by summing up a continuous variable, you can use the weight
geom. This is illustrated in Figure 2.13. The first plot is a simple bar chart of
diamond colour, and the second is a bar chart of diamond colour weighted by
carat.

qplot(color, data = diamonds, geom = "bar")
qplot(color, data = diamonds, geom = "bar", weight = carat) +
scale_y_continuous("carat")

2.5.5 Time series with line and path plots

Line and path plots are typically used for time series data. Line plots join the
points from left to right, while path plots join them in the order that they
appear in the dataset (a line plot is just a path plot of the data sorted by x
value). Line plots usually have time on the x-axis, showing how a single variable
has changed over time. Path plots show how two variables have simultaneously

2.5 Plot geoms 21

color

co
un
t

0

2000

4000

6000

8000

10000

D E F G H I J
color

ca
ra
t

0

2000

4000

6000

8000

D E F G H I J

Fig. 2.13: Bar charts of diamond colour. The left plot shows counts and the right plot
is weighted by weight = carat to show the total weight of diamonds of each colour.

changed over time, with time encoded in the way that the points are joined
together.

Because there is no time variable in the diamonds data, we use the
economics dataset, which contains economic data on the US measured over
the last 40 years. Figure 2.14 shows two plots of unemployment over time, both
produced using geom = "line". The first shows an unemployment rate and
the second shows the median number of weeks unemployed. We can already
see some differences in these two variables, particularly in the last peak, where
the unemployment percentage is lower than it was in the preceding peaks, but
the length of unemployment is high.

qplot(date, unemploy / pop, data = economics, geom = "line")
qplot(date, uempmed, data = economics, geom = "line")

date

un
em

pl
oy
/p
op

0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050

1967 1972 1977 1982 1987 1992 1997 2002 2007
date

ue
m
pm

ed

4

6

8

10

12

1967 1972 1977 1982 1987 1992 1997 2002 2007

Fig. 2.14: Two time series measuring amount of unemployment. (Left) Percent of
population that is unemployed and (right) median number of weeks unemployed.
Plots created with geom="line".

To examine this relationship in greater detail, we would like to draw both
time series on the same plot. We could draw a scatterplot of unemployment
rate vs. length of unemployment, but then we could no longer see the evolution

22 2 Getting started with qplot

over time. The solution is to join points adjacent in time with line segments,
forming a path plot.

Below we plot unemployment rate vs. length of unemployment and join the
individual observations with a path. Because of the many line crossings, the
direction in which time flows isn’t easy to see in the first plot. In the second
plot, we apply the colour aesthetic to the line to make it easier to see the
direction of time.

year <- function(x) as.POSIXlt(x)$year + 1900
qplot(unemploy / pop, uempmed, data = economics,

geom = c("point", "path"))
qplot(unemploy / pop, uempmed, data = economics,
geom = "path", colour = year(date)) + scale_area()

unemploy/pop

ue
m
pm

ed

4

6

8

10

12

●●●
●●●

●

●
●

●●●●●
●●●●●
●

●●●
●●●
●●

●● ● ●●
●

●●
●
●●●

●
●
●●●
●●

●
●●

●

●●●●
●●●●

●

●●
●●●

●
●
●
●
●●●

●
●
●●
●
●
●●●●●

●
●

●
●● ●

●

●

● ●

●

●

●●

●●

●

●
●●

●
●
●●
●●●●●

●
●

●
●●●

●

●

●●
●●
●●

●●
●●

●
● ●●●
●
●●
●●●
●●●
●

●

●●●
●

●
●● ● ●

●

●
●●●●● ●

●●
●

●
●

●●
● ● ●●●

●●
●
●

●

●●

● ●
●●

●

●

●
●

●

●

●

●●●●

●
●

●●●

●

● ●●
●
●●●
●
●●●●
●
●●●●●●● ●●●●
●●●

●
●●●●

●●
●
●●●●

●
●●●●

●●
●●●
●●●●●
●
●●●●●●

●

●●●●●
●●●
●
●● ●●●

● ●●
●●

●● ●
●●
●
●
●
●
●
●●●
●

● ●●●●
●●
●

●●●●
●●●●●●

●●
●

●●●●●●●
●

●

●
●

●●
● ●

●

●

●●
●

●●
●●
●
●
●●

●●●●●

●●●
●●

●
●●
●
●
●

●●●●
●●●

●

●●●●

●

●●
●●●

●
●●
●

●
●●●●●
●●●
●●
●
●

●

●●● ●
●
●

●
●
●

● ●
● ●

●
●●●●

●

●

●

●●
●●●

●●●●
●
●

●

●●●
●●●●●●

●
●

●

●
●
●●●●●
●●●●●●●

●●●●●
●
●●●

●

●●●●●

●

●●
●●

0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
unemploy/pop

ue
m
pm

ed

4

6

8

10

12

0.0150.0200.0250.0300.0350.0400.0450.050

year(date)
1970
1980
1990
2000

Fig. 2.15: Path plots illustrating the relationship between percent of people unem-
ployed and median length of unemployment. (Left) Scatterplot with overlaid path.
(Right) Pure path plot coloured by year.

We can see that percent unemployed and length of unemployment are
highly correlated, although in recent years the length of unemployment has
been increasing relative to the unemployment rate.

With longitudinal data, you often want to display multiple time series on
each plot, each series representing one individual. To do this with qplot(), you
need to map the group aesthetic to a variable encoding the group membership
of each observation. This is explained in more depth in Section 4.5.3.

2.6 Faceting

We have already discussed using aesthetics (colour and shape) to compare
subgroups, drawing all groups on the same plot. Faceting takes an alternative
approach: It creates tables of graphics by splitting the data into subsets and
displaying the same graph for each subset in an arrangement that facilitates
comparison. Section 7.2 discusses faceting in detail, including a discussion of

2.7 Other options 23

the advantages and disadvantages of using faceting instead of aesthetics in
Section 7.2.5.

The default faceting method in qplot() creates plots arranged on a grid
specified by a faceting formula which looks like row var ∼ col var. You can
specify as many row and column variables as you like, keeping in mind that
using more than two variables will often produce a plot so large that it is
difficult to see on screen. To facet on only one of columns or rows, use . as
a place holder. For example, row var ∼ . will create a single column with
multiple rows.

Figure 2.16 illustrates this technique with two plots, sets of histograms
showing the distribution of carat conditional on colour. The second set of his-
tograms shows proportions, making it easier to compare distributions regardless
of the relative abundance of diamonds of each colour. The ..density.. syntax
is new. The y-axis of the histogram does not come from the original data, but
from the statistical transformation that counts the number of observations in
each bin. Using ..density.. tells ggplot2 to map the density to the y-axis
instead of the default use of count.

qplot(carat, data = diamonds, facets = color ~ .,
geom = "histogram", binwidth = 0.1, xlim = c(0, 3))

qplot(carat, ..density.., data = diamonds, facets = color ~ .,
geom = "histogram", binwidth = 0.1, xlim = c(0, 3))

2.7 Other options

These are a few other qplot options to control the graphic’s appearance. These
all have the same effect as their plot equivalents:

• xlim, ylim: set limits for the x- and y-axes, each a numeric vector of length
two, e.g., xlim=c(0, 20) or ylim=c(-0.9, -0.5).

• log: a character vector indicating which (if any) axes should be logged.
For example, log="x" will log the x-axis, log="xy" will log both.

• main: main title for the plot, centered in large text at the top of the plot.
This can be a string (e.g., main="plot title") or an expression (e.g.,
main = expression(beta[1] == 1)). See ?plotmath for more examples
of using mathematical formulae.

• xlab, ylab: labels for the x- and y-axes. As with the plot title, these can
be character strings or mathematical expressions.

24 2 Getting started with qplot

carat

co
un
t

0
500
1000
1500
2000

0
500
1000
1500
2000

0
500
1000
1500
2000

0
500
1000
1500
2000

0
500
1000
1500
2000

0
500
1000
1500
2000

0
500
1000
1500
2000

0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
E

F
G

H
I

J

carat

de
ns
ity

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
E

F
G

H
I

J

Fig. 2.16: Histograms showing the distribution of carat conditional on colour. (Left)
Bars show counts and (right) bars show densities (proportions of the whole). The
density plot makes it easier to compare distributions ignoring the relative abundance
of diamonds within each colour. High-quality diamonds (colour D) are skewed towards
small sizes, and as quality declines the distribution becomes more flat.

2.7 Other options 25

The following examples show the options in action.

> qplot(
+ carat, price, data = dsmall,
+ xlab = "Price ($)", ylab = "Weight (carats)",
+ main = "Price-weight relationship"
+)

Price−weight relationship

Price ($)

W
ei

gh
t (

ca
ra

ts
)

5000

10000

15000

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

0.5 1.0 1.5 2.0 2.5

> qplot(
+ carat, price/carat, data = dsmall,
+ ylab = expression(frac(price,carat)),
+ xlab = "Weight (carats)",
+ main="Small diamonds",
+ xlim = c(.2,1)
+)
WARNING: Removed 35 rows containing missing values (geom_point).

Small diamonds

Weight (carats)

pr
ice

ca
ra

t

2000

4000

6000

8000

10000

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

● ●
●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

0.2 0.4 0.6 0.8 1.0

> qplot(carat, price, data = dsmall, log = "xy")

26 2 Getting started with qplot

carat

pr
ice

103

103.5

104

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

10−0.6 10−0.4 10−0.2 100 100.2

2.8 Differences from plot

There are a few important differences between plot and qplot:

• qplot is not generic: you cannot pass any type of R object to qplot and
expect to get some kind of default plot. Note, however, that ggplot() is
generic, and may provide a starting point for producing visualisations of
arbitrary R objects. See Chapter 9 for more details.

• Usually you will supply a variable to the aesthetic attribute you’re interested
in. This is then scaled and displayed with a legend. If you want to set
the value, e.g., to make red points, use I(): colour = I("red"). This is
explained in more detail in Section 4.5.2.

• While you can continue to use the base R aesthetic names (col, pch, cex,
etc.), it’s a good idea to switch to the more descriptive ggplot2 aesthetic
names (colour, shape and size). They’re much easier to remember!

• To add further graphic elements to a plot produced in base graphics, you
can use points(), lines() and text(). With ggplot2, you need to add
additional layers to the existing plot, described in the next chapter.

